Na+ channels with high and low affinity tetrodotoxin binding sites in the mammalian skeletal muscle cell. Difference in functional properties and sequential appearance during rat skeletal myogenesis.

نویسندگان

  • C Frelin
  • P Vigne
  • M Lazdunski
چکیده

High and low affinity binding sites for tetrodotoxin have been found in rat skeletal muscle cells in vitro using a radiolabeled tetrodotoxin derivative and 22Na+ flux studies. High affinity binding sites for tetrodotoxin (KD(tetrodotoxin) = 1.6 nM) cannot be detected at the myoblast stage. They appear and increase in density as myoblasts fuse into myotubes to reach a maximum binding capacity of 50 fmol/mg of proteins. Na+ channel structures with a high affinity for tetrodotoxin cannot be activated by neurotoxins specific for the Na+ channel such as veratridine and sea anemone toxinII. They are not expressed in the action potential. Na+ channels with a low affinity for tetrodotoxin (IC50(tetrodotoxin) = 1 microM) are functional since they can be activated by veratridine and sea anemone toxinII. They are already expressed in myoblasts and their density is not modified during the fusion of myoblasts into myotubes; they remain functional throughout the differentiation process. It is suggested that neuronal factors are not required for the synthesis of structures with high affinity binding sites for tetrodotoxin in the rat muscle and that they are only involved for the maturation of these structures from a nonfunctional to a functional form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential expression of sodium channel activities during the development of chick skeletal muscle cells in culture

The expression of Na+ channels during differentiation of cultured embryonic chick skeletal muscle cells was investigated using saxitoxin (STX) and batrachotoxin (BTX), which previously have been shown to interact with distinct, separate receptor sites of the voltage-sensitive Na+ channel of excitable cells. In the present study, parallel measurements of binding of [3H]-STX (STX) and of BTX-acti...

متن کامل

Effects of ionic parameters on behavior of a skeletal muscle fiber model

All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...

متن کامل

Ca2+ and Na+ currents in developing skeletal myoblasts are expressed in a sequential program: reversible suppression by transforming growth factor beta-1, an inhibitor of the myogenic pathway.

We have analyzed the biophysical and developmental properties of Ca2+ and Na+ currents in C2 muscle cells, whose morphological and biochemical phenotype closely resembles differentiated skeletal muscle. Both fused and unfused C2 myocytes possessed: (1) membrane capacitance consistent with the presence of complex sarcotubular invaginations, (2) tetrodotoxin-sensitive Na+ channels, and (3) "fast"...

متن کامل

Isolation of membranes enriched in "tetrodotoxin-insensitive" saxitoxin-binding sites from mammalian ventricle. Receptor solubilization.

Purification and characterization of Na+ channel protein from mammalian ventricular myocytes has heretofore been complicated by the low concentration of Na+ channels and by the finding that mammalian ventricles contain both tetrodotoxin (TTX)-sensitive channels (TSC), with high affinity for saxitoxin (STX), and TTX-insensitive channels (TIC), with low affinity for STX. Most (perhaps all) of the...

متن کامل

Adaptive evolution of the vertebrate skeletal muscle sodium channel

Tetrodotoxin (TTX) is a highly potent neurotoxin that blocks the action potential by selectively binding to voltage-gated sodium channels (Na(v)). The skeletal muscle Na(v) (Na(v)1.4) channels in most pufferfish species and certain North American garter snakes are resistant to TTX, whereas in most mammals they are TTX-sensitive. It still remains unclear as to whether the difference in this sens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 258 12  شماره 

صفحات  -

تاریخ انتشار 1983